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ABSTRACT
During the Baroque period, improvisation was a key element
of music performance and education. Great musicians, such
as J.S. Bach, were better known as improvisers than com-
posers. Today, however, there is a lack of improvisation
culture in classical music performance and education; clas-
sical musicians either are not trained to improvise, or can-
not find other people to improvise with. Motivated by this
observation, we develop BachDuet, a system that enables
real-time counterpoint improvisation between a human and
a machine. This system uses a recurrent neural network to
process the human musician’s monophonic performance on
a MIDI keyboard and generates the machine’s monophonic
performance in real time. We develop a GUI to visualize
the generated music content and to facilitate this interac-
tion. We conduct user studies with 13 musically trained
users and show the feasibility of two-party duet counter-
point improvisation and the effectiveness of BachDuet for
this purpose. We also conduct listening tests with 48 par-
ticipants and show that they cannot tell the difference be-
tween duets generated by human-machine improvisation us-
ing BachDuet and those generated by human-human impro-
visation. Objective evaluation is also conducted to assess
the degree to which these improvisations adhere to common
rules of counterpoint, showing promising results.
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CCS Concepts
•Human-centered computing → Interaction design;
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1. INTRODUCTION
While music improvisation today is strongly connected with
genres like jazz, it was also a key element of Baroque and
Classical music. Many composers of this period such as J.S.
Bach and Beethoven were skillful improvisers, and perform-
ers regularly studied improvisation as part of their music ed-
ucation [11]. The crucial role of improvisation is illustrated
in the belief that ”The whole history of the development of
[Western art] music is accompanied by manifestations of the
drive to improvise” [6]. Improvisation has also a lot to offer
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individually to musicians, including, among other benefits,
sharpening performers’ creativity and critical thinking, in-
creasing their understanding of the musical style they im-
provise in, and helping them improve their instrument play-
ing skills. Beginning in the 19th century, however, improvi-
sation became a less important part of Western art music;
Some of the reasons are outlined in [13].

Motivated by these facts, we developed a system named
BachDuet that allows a human musician to improvise a duet
counterpoint with a computer agent in real time. Our goal
was not to create a passive accompaniment system, but a
musical agent that would have an equal role with the hu-
man performer. Counterpoint fits well to our purpose, since
it is, by definition, the art of combining melodies that are
interdependent in their harmonic implications, while rela-
tively independent in their rhythm and contour. Compared
to other improvisational techniques such as ornamentation,
making variations of a melody, and harmonizing a given
voice, the kind of real-time counterpoint improvisation that
BachDuet supports is less constrained: no predetermined
melody or chord sequence is needed, although it can be in-
corporated if given. This type of improvisation, however,
does need to respect the constraints of Western music the-
ory. In particular, both the human performer and the com-
puter agent are expected to follow common counterpoint
rules to achieve a good improvisation result.

A preliminary version of the proposed system was demon-
strated in [1], and this paper provides a detailed description
of the techniques and experiments. The contributions of
this work are threefold: 1) To our best knowledge, this is
the first system that allows real-time interaction between
a human performer and a computer agent in the classical
style. 2) A set of techniques are developed or integrated
to build this system, including music representations, key
detection and the Graphical User Interface (GUI). 3) Sub-
jective and objective experiments that evaluate the user ex-
perience and the quality of the generated music pieces show
promising results. A demo video can be found here 1

We believe that this effort is an important step toward
our goal of “human-computer collaborative music making”,
and we also hope this system will serve as a practice tool
for classical musicians to develop their improvisation skills.

2. RELATED WORK
Automatic Music Generation (AMG) is the task of using
algorithms to compose a piece of music. Existing AMG sys-
tems include rule-based systems [4], statistical models (e.g.
Markov chains [17]), evolutionary algorithms (e.g. genetic
algorithms [2]) and learning-based algorithms (e.g. neural
networks [5]). Recent years have witnessed a significant
growth in the last category due to the rise of deep learning.

1https://www.youtube.com/watch?v=fkjtxK89Xi4



One area of research in AMG is interactive music gener-
ation, where a human musician interacts with a computer
algorithm (agent) to compose a piece of music [15]. Inter-
action may happen offline which allows iterations in the
generation process, or in real time, where both the human
and the algorithm improvise their music.

In this work we are interested in real-time interactive mu-
sic generation for counterpoint improvisation. Most work in
this category, however, is designed to only support the “call
& response”mode, where the user plays for several measures
and the machine then tries to respond in an appropriate way
[12, 2, 14]. To our knowledge, only one system, named Voy-
ager [10], was designed to support “simultaneous play”, but
the music style is contemporary and the agent only responds
to low-level features of the human performance, without any
modeling of the high-level musical content.

For real-time interactive music generation of polyphonic
music, it is noted that our lab proposed a reinforcement
learning algorithm [7] that could support this type of inter-
action. However, [7] stays at the algorithm level and no real
interactions are performed or evaluated. This paper, on the
other hand, enables and evaluates such interaction.

3. PROPOSED SYSTEM
The proposed BachDuet system enables a human performer
to improvise a duet counterpoint with a computer agent in
real time. The concept of this interaction is illustrated in
Figure 1. The human performer plays one voice on a MIDI
keyboard and the note information is input to the system.
The agent employs a deep neural network to improvise the
other voice. The music content of both voices is rendered
through the GUI, showing both the MIDI piano roll and the
music notation. Key modulation detection is performed to
estimate note spellings (e.g., C\, DZ ) for typesetting.

The system assumes a 4/4 time signature and operates
with an adjustable steady tempo to ensure human-machine
synchronization. The extension to other time signatures is
straightforward.

Figure 1: Basic concept of BachDuet.

3.1 Graphical User Interface
The GUI of BachDuet is illustrated in Figure 2. It serves
two primary purposes: 1) music content visualization, and
2) system setting control.

Music visualization is important for the user to better un-
derstand the interactions. We display both the MIDI piano
roll and Western music notation. The piano roll uses dif-
ferent colors to differentiate the two voices. Musical notes
that are represented as rectangles originate from the key-
board on the far right and then flow to the left in real time.
The entire piano roll panel displays up to about 12 mea-
sures of the music. This visualization helps the user see
the pitch contours and their interactions in a relatively long
temporal scope. The music notation visualization renders
musical notes on two staves, treble clef for the upper staff
and bass clef for the lower staff. Notes also flow from right
to left. However, the rendering of the notes is delayed, as it
needs to wait until the note offset signal to determine the

duration of the note. Key modulations are estimated and
displayed above the music notation to help the system deter-
mine the spelling of notes (e.g., C\ vs. DZ) and accidentals,
and to help the user understand the music context. The
music score visualization has a temporal scope of about five
measures, allowing the user to see more musically relevant
information in the recent past.

For system settings, there are several major sections:
• Metronome: The user can specify the tempo and choose

different sounds for the downbeat and other beats.
• Human Performance: The user can choose to play on

a computer keyboard or an external MIDI keyboard.
There are also options for dealing with notes that are
shorter than the temporal resolution of our system.
• Neural Network Parameters: There are options to

choose different pre-trained models, as well as the
amount of randomness of the generated notes (sam-
pling temperature).
• Memory Reset: The user may reset the agent’s mem-

ory (RNN hidden states) to start a new session.
• Playback Mixer: Through the Mixer dialog box, the

user can control volume levels of the human’s part,
the agent’s part and the metronome sound.
• File Operations: After a session, the user can scroll the

music notation panel to see the entire past interaction,
and save the result in a MusicXML file.

Figure 2: A (truncated) screenshot from BachDuet
during operation.

3.2 The Agent Model
We design a recurrent neural network (RNN) to implement
the agent that interacts with the human player in real time.
We quantize music timing into 16th note steps, and at each
timestep, the RNN predicts a token to play. This predic-
tion is performed by sampling the probability of the token
conditioned on all previous tokens of both voices.

More specifically, denote the token representations of a
duet up to the t-th timestep by
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where x
(i)
t is the token of the i-th part at timestep t. With-

out loss of generality, assume the first part is played by the
human while the second part is by the agent. Our goal
is to find a θ-parameterized model Gθ to approximate the
conditional distribution
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Using the hidden state of the RNN as the context summa-
rizer, we can write

Gθ(x
(2)
t |context) = Gθ(x

(2)
t |RNN(x

(1)
1:t−1, x

(2)
1:t−1)). (2)

We use 2 layers of 400 Long Short-Term Memory (LSTM)
units each for the RNN. Using a variation of the architecture
proposed in [8], we augment the RNN by an external stack
structure, which serves as an additional memory unit. The
stack stores 32 400-d vectors output from the second layer
of the RNN. At each timestep, the RNN reads an element
from the stack (with attention over all the stack elements),
predicts the next token, and then takes an action (push,
pop, no action or a combination of these) to update the
content of the stack. The final token predictor consists of a
fully connected layer and a softmax layer.

3.3 Key Detection
As we mentioned in Section 3.1, one of the features of the
GUI is the real-time visualisation of the generated duet in
the staff notation format. This requires the system to es-
timate key modulations for figuring out note spellings and
accidentals for the human MIDI keyboard input as well as
the agent’s Midi Artic output.

To do this, we integrate another RNN module in our
model. This RNN predicts the next key from the music
content as well as the previous key predictions. The inte-
gration of this key detection module to BachDuet makes the
agent model a multi-task learning model. Since key modu-
lations are less frequent, we make the predictions at every
beat instead of the 16th note.

For the key unit we used a single layer vanilla LSTM
with 300 hidden units. The final key predictor is a fully-
connected and a softmax layer with 24 hidden units, each
of them corresponding to one of the 24 keys. The input to
the key LSTM, is a combination of the previous key, with
the hidden state of the note LSTM unit.

3.4 Music Representation
Each x

(i)
t token encodes the pitch, articulation and rhythm

information of a note. Pitch is encoded with the MIDI num-
ber and the chromatic pitch class (CPC), covering a pitch
range of [28,94] in MIDI number. The reason for using this
encoding instead of a more musically meaningful encoding
that incorporates note spellings and accidentals as in [18]
is that the human input to our system is through a MIDI
keyboard. The latter encoding would require accurate key
estimation in real time, and small errors in key estimation
may have big impacts on the interaction quality. Rests are
given a MIDI number of 0 and a CPC of 12.

For articulation information, we only consider two kinds:
onset (1) and hold (0). Notes with a duration longer than
a sixteenth note are represented by multiple tokens, where
the first is an onset and the rest are holds. We combine
the MIDI and articulation encoding to create a new token
in the form of [Midi Artic]. For example, a C4 eighth note
is represented by two tokens [60 1, 60 0 ]. This ensures
that holds (and onsets) of two different pitches use different
tokens. This reduces the token imbalance, as if one common
token was used for holds of all the different pitches, then
this token would constitute more than 70% of the tokens
presented in our training data.

We encode rhythm information following [18]. Specifi-
cally, we use three vectors for each timestep: a) a bar vector
indicating the beginning of a bar, b) a beat vector indicating
the beat division level, and c) an accent vector indicating
the metrical accent level relevant to the music style.

In total, we use 135 Midi Artic tokens (2*67 + 1 for the
rest), 13 CPC tokens (12 + 1 for the rest), and 10 rhythm

tokens in our encoding dictionary. It is noted that only the
Midi Artic tokens are predicted, while the CPC and rhythm
tokens are only fed to the RNN to form the musical context.

Figure 3: Representation of tokens.

3.5 Embeddings
In order to feed the tokens to the neural network, we have to
convert them into numerical values. Taking the Midi Artic
tokens as an example, assigning an integer index to each
token according to the pitch order is problematic, as it fails
to capture close relations between notes in important note
intervals (e.g., octave relations). One-hot encoding (i.e., as-
signing each token a one-hot vector) has a similar problem;
It actually removes all inter-dependencies between notes.
We hope to encode our tokens with musically meaningful
embedding vectors, where tokens that are close in musical
senses are also close in the embedding space. We add em-
bedding layers prior to the RNN layers to automatically
learn the embedding vectors from data.

We use three embedding layers, one for each token as-
sociated with a timestep (Midi Artic, CPC, and rhythm).
These embedding layers take token indices as input, and use
look-up tables to output an embedding vector. These lay-
ers can also be viewed as fully connected layers that convert
one-hot representation of a token to its embedding vector.
Nevertheless, using look-up tables is more efficient. Finally,
we concatenate the three embedding vectors to obtain the
final embedding vector for each timestep.

The training of these embedding layers is performed jointly
with the RNN model in an end-to-end fashion. To confirm
that the embedding layers calculate musically meaningful
embedding vectors for the RNN to process, after training,
we use t-SNE [16], a non-linear dimensionality reduction
tool, to visualize the Midi Artic embedding vectors in a 2D
space (Figure 4). A musically trained reader can quickly
observe some interesting patterns: There is a clear distinc-
tion between the ”onset” and ”hold” versions of the notes,
the rest is isolated in the middle, and notes that have an
octave or fifth relation are grouped together.

3.6 Training
3.6.1 Dataset

The proposed agent model needs to be trained on duet coun-
terpoints. We extract the soprano and bass parts of 365 J.S.
Bach chorales from the music21 library [3] to form duets.
We also transpose each of the duets to all 12 keys (between
6 semitones up and 5 semitones down), totalling 8760 duets.

One may question the validity of the extracted soprano-
bass duets in terms of harmonic coherence and complete-
ness, due to the lack of the internal voices. Although this is
a valid point, we argue that the issue is less of a concern for
developing our agent model. Evidence shows that many so-
prano melodies in Bach chorales originated from old hymns
and folk songs, and when J.S. Bach composed a four- or
five-part chorale for them, he first composed the bass voice
in a two-part counterpoint with the melody, and then filled
the rest of the voices [11]. Nonetheless, it is our future work
to include “real” duet counterpoints such as Bach inventions



Figure 4: Visualization of the Midi Artic embed-
ding vectors in 2D using t-SNE.

in the training data.

3.6.2 Performance Mistakes Resilience
During real-time operation users may make performance
mistakes, or be slightly out of sync with the metronome.
The reasons can be either that they are not very capable
keyboard players, or that when they improvise they may not
be so confident about some notes. Another reason is that
human performers tend to play expressively, which intro-
duces micro-deviations from the metronome signal. These
mistakes and deviations would introduce “noises” to the to-
ken representation during the timing quantization process,
and could affect the agent’s performance if the training set
does not contain such noises. In order to make the neural
network resilient to such type of noises, besides the typical
regularization methods such as dropout, we also injected
four types of common performance mistakes and timing de-
viations in the training data:
• Time Shift: Randomly shifting a note one 16th note

before or after its onset.
• Wrong Duration: Randomly shortening the duration

of notes
• Pitch Shift: Randomly shifting a note one semitone

or tone higher or lower.
• Deletion: Randomly deleting a note.

In Figure 5 we can see how a melody changes after we
inject these mistakes. During training we apply this random
noise on every training batch independently, so the neural
network is never trained on the same exact data.

Figure 5: A melody, before and after random mis-
take injection.

3.6.3 Training parameters
For training, we use the cross-entropy loss and Adam opti-
mizer for both note and key RNN modules. We start with
an initial learning rate of 0.001 and reduce it by half every
time the validation loss stops improving. We apply dropout
of 0.5 on all the layers, excluding the recurrent connections.
Finally, we linearly increase the probability of injecting per-
formance mistakes, from 0 to 0.15.

4. EXPERIMENTS
We try to answer the following research questions through
a set of experiments: RQ1) Is interactive duet counterpoint
improvisation a feasible task for classical musicians? RQ2)
Do users find BachDuet a good partner for duet counter-
point improvisation? RQ3) How does the quality of human-
machine duet improvisations from BachDuet compare with
that of human-human ones?

4.1 Experimental Setup
For the first experiment we recruited 13 musically trained
participants, 10 of whom are students at the Eastman School
of Music. These participants had passed through a screen-
ing process during which they had to answer questions about
their music skills. The participants that were qualified were
asked to perform two tasks: 1) improvise with our system
(HM), and 2) improvise with another participant (HH). For
the HH task and for 10 out of 13 participants, the other hu-
man partner was a musician who did not belong in this pool,
while the remaining 3 interacted with each other. Each
task lasted for about 3-10 minutes, and the order of the
two tasks was randomized to reduce bias. The users always
knew whether they interacted with BachDuet or with an-
other person. Finally, during the HH task, the users were
advised not to use any kind of verbal visual or gestural
communication, besides the visual feedback from the GUI,
to make the comparison between HH and HM more fair.

4.2 User Evaluation
After completing the first experiment, each of the 13 par-
ticipants were asked to answer a number of questions about
the user experience and the musical results:

1. Did you find the GUI easy/intuitive to use?
2. How accurate were the visualizations compared to your

actual input from the MIDI keyboard?
3. How easy was it to synchronize your playing with the

metronome and the machine’s output?
4. Do you think that the algorithm learnt how to play in

the style of chorales?
5. How do you describe the direction of information flow

between you and the machine (1 from you to the ma-
chine while 10 for the opposite)?

6. How accurate was the key prediction? (Remember key
is different from chord)

7. How accurate was the prediction of the note spelling?
8. How did you like the musical result of your interaction

with BachDuet?
9. For the bad musical results, do you feel it was algo-

rithm’s fault (1) or yours (10)?
10. Do you feel that spending more time playing with Bach-

Duet would improve your improvisation skills?
11. Rate how responsive the system was.
12. Rate how stimulating/engaging the system was.
13. Rate how surprising the system was.
14. What is your overall rating of your interaction with

the other person?
15. What is your overall rating of your interaction with

BachDuet?
The results in Figure 6 indicate that users enjoyed their

interaction with BachDuet, yet there is still space for im-
provement. For the GUI related questions, users were very
satisfied with the real-time visualization and the overall
GUI. They all preferred the staff notation over the piano
roll. Most of them believed that the algorithm generated
music in the style of Bach Chorales. For Q5, score 1 indi-
cates that the information flow is from the participant to
the machine, while score 10 indicates the opposite. We be-
lieve that a median score around 4.5 from the users was



very close to the ideal situation (5.5) where the human and
the machine have equal roles in the improvisation. For Q6,
even though the key prediction was not always accurate, we
can see that the users provided high scores for the spelling
of the notes (Q6). This happens because the predicted key,
even if wrong, was usually a related one to the actual key
(with respect to the circle of fifths), resulting in the spelling
of the notes to be correct most of the times.

Users enjoyed the musical result of their interaction with
BachDuet to a large extent (Q8), while they felt that both
they as well as BachDuet were almost equally responsible
for the bad musical results (Q9). For Q10, many partici-
pants believed that their counterpoint improvisation skills
could be improved using the system, especially if in the fu-
ture we add a real-time module that indicates mistakes and
suggests alternatives. In Q11-Q13, the system was rated
very responsive, and their engagement level was high. The
surprisement ratings were slightly lower, probably because
the agent output did not deviate much from the Chorale’s
style. Some subjects were more pleased when we increased
the sampling temperature (randomness) of our model, but
the musical result started deviating from the strict form of
Chorales. Finally, BachDuet achieved a high overall rating
(Q15) compared to that of human-human improvisations.
It is noted that the participants know in advance if they
are interacting with the agent or another human; this side
information may affect their ratings. Besides the 15 quanti-
tative questions, the participates were also asked to provide
open-ended comments. The overall takeaway message from
some of these comments is that our algorithm predicted ca-
dences and key modulations better than humans. However,
they felt more relaxed when playing with another human,
probably because, when interacting with the system, they
felt like they had to play continuously without rests. Our
observation is that the average harmonic coherence of the
duets generated in the HM task was better. However, in
the HH task, there was more heavy use of imitative coun-
terpoint, as well as the tendency to repeat some melodic
patterns, giving the impression of larger-scale structure.

Figure 6: Box plots of scores of all questions re-
ceived from the 13 participants. For all questions
except for Q5 (green color), the scores are the
higher the better.

4.3 Subjective Listening Test
For this test, we gathered the generated duets of each of
the 13 participants from our experiment, and kept the most
harmonically coherent segments from each duet. We man-
aged to gather 40 audio clips of about 1-2 minutes each,
split evenly among the HH and HM tasks. Having these,
we recruited a new group of participants, and set up a lis-
tening Turing test where they had to listen to five randomly

Figure 7: Box plots of the musical background of
the 13 participants.

chosen duets, rate them, and decide if they correspond to
an HH or HM task.

We used the Amazon mTurk platform to recruit 22 par-
ticipants and we paid them $1 per HIT (Human Intelligent
Task) for 6 to 10 minutes of work. Each participant could
work on up to 2 HITs. To filter out bots, and workers that
have no musical background, we designed a qualification
test. The participants were given an image of two measures
of complex polyphonic music, and they had to find the num-
ber of voices, the key, and the scale degree of a note.

Besides the mTurk survey, we created an independent
webpage 2 to host the same HIT, in order to make it avail-
able for a larger group of people without monetary incen-
tives. Since there was no payment for this task, we did not
use the same qualification test as in mTurk, but we asked
them to describe their music education level (composer, per-
former, expert, novice, etc). Out of 44 total participants,
only 26 musically trained were selected.

The results of the listening test are similar for both groups
of participants (mTurk, duet-survey.com), and indicate that
the HM generated duets were at least as good as the HH
ones, if not better, as shown in Figure 8. The scores for both
categories were almost the same, and even though the HM
task achieved a higher score, this difference is not statisti-
cally significant (Mann Whitney U test, a = 0.05). Further-
more, neither group of participants were able to differentiate
HH and HM duets. Specifically, for the mTurk group, 56%
of HH duets are classified as HM in aggregation and 47%
of HM duets are classified as HH. For the duet-survey.com
group, 53.57% of HH duets are classified as HM and 48.97%
of HM duets are classified as HH.

Figure 8: Blind listening test results from both par-
ticipant groups (mTurk and duet.survey.com).

4.4 Objective Evaluation
2http://www2.ece.rochester.edu/projects/air/
projects/bachduet/survey.html



In this section, we perform an objective evaluation to fur-
ther assess the quality of the generated duets. Specifically,
we investigate the extent to which the generated duets fol-
low common counterpoint rules. To do so, we developed an
algorithm based on music21’s voiceLeading module, which
parses two-voice counterpoint pieces and evaluates each ac-
cording to several common-practice style guidelines. We
consider 9 types of mistakes, each of which is weighted ac-
cording to its severity based on several music theory text-
books, such as [9]: 1) forbidden parallel: 1, 2) improper res-
olution: 1, 3) unprepared dissonance: 0.75, 4) hidden fifth:
0.5, 5) hidden octave: 0.5, 6) leap not set with step: 0.5, 7)
opens incorrectly: 0.5, 8) melodic dissonance: 0.5, and 9)
voice crossing: 0.25. The algorithm iterates through all note
pairs that are adjacent within the same voice (i.e., melodic
intervals), and stacked vertically between voices (i.e., har-
monic intervals), and searches for any of the above mistakes.
The final normalized score is the total number of pairs minus
the weighted sum of all mistakes, all over the total number
of pairs, and it ranges from from 0 (nothing correct) to 1
(no mistakes).

We use the above-mentioned script to evaluate four sets of
duets: 1) HM duets used in the listening test, 2) HH duets
used in the listening test, 3) duets harmonized by our agent
model in an online but non-real-time fashion of a soprano
or bass voice from Bach chorales (test set), and 4) soprano-
bass duets extracted from Bach chorales (test set). Clearly,
Sets 1 and 2 are about real-time interactions between two
parties. For Set 3, there is no interaction between the two
voices; the agent model simply harmonizes Bach’s part. Set
4 serves as a baseline for duet counterpoint.

HH HM Harmonization Bach duets
score 0.71 0.72 0.76 0.89

Table 1: Objective scores of 4 different types of
duets

The above matrix is in accordance with the listening tests,
where the perceived quality of both HH and HM duets was
very similar. None of the generated duets could achieve a
similar score to Bach duets, which is expected, since Bach
duets are composed in an offline bidirectional way. This
score is just an indicator that our model is adhering to the
basic rules of music theory, and by no means, it should
be considered a valid descriptor of the the overall musical
quality of the duets.

5. CONCLUSIONS
In this work, we proposed BachDuet, a novel human-machine
interactive system for duet counterpoint improvisation. The
machine agent model in BachDuet is a multi-tasking LSTM
network. It predicts the token to play by the machine in
the next 16th note timestep, as well as the key modula-
tion in the next beat for music notation visualization. User
studies suggested that classical musicians showed great in-
terest in duet counterpoint improvisation, and they rated
the human-machine interaction experience highly compared
to that in human-human interaction. Listening tests and
objective evaluations showed that the quality of the gener-
ated human-machine duets is comparable to that of human-
human duets. For future work, we plan to improve the agent
model with more diverse training data and network archi-
tecture. Another interesting idea is to extend the system to
support acoustic and visual inputs from the user. A com-
puter vision module can be used to interpret the performers’
cues and infer the dynamics and tempo.
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